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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2379

AN INVESTIGATTON OF THE EFFECTS OF JET-OUTLET CUT-OFF
ANGLE ON THRUST DIRECTION AND BODY PITCHING MOMENT

By James R. Blackaby
SUMMARY

A wind—tunnel investigation was made to determine the effects of
Jet—outlet cut—off angle on the directional and spreading characteristics
of an wmheated, subsonic air Jjet, and on the pitching moment of the body
from which the Jet issued. The outlet was incorporated in the tail of an
axially symmetric body and was cut at angles of 09, 309, 60°, and 75°
relative to a plane normal to the outlet axis.

Force measurements showed that the net effect of cutting the outlet
as much as 75° from normal was only a slight change of the pitching
moment of the body. This change was probably caused primarily by
external loads on the outlets,

. In addition to the force measurements, visual studies were made of
the flow in the Jet exhausting from the outlets into still air. The
characteristics of the flow in the Jet observed in these studies were
compared with characteristics shown by velocity profiles measured across
alr Jets in other investigations.

INTRODUCTION

It was reported in reference 1 that a Jet outlet bevelled 250
(i.e., cut off at an angle of 250 measured from a plane normal to the
axis of the nozzle) caused little deflection of an unheated, subsonic
air Jet lssuing from a cylindrical nozzle. The conclusions were based
on tests in still air,

In order to ascertain whether greater Jet—outlet bevel angles or
external alr flow affect the direction of an unheated, subsonic air Jet,
the present investigation was conducted in one of the Ames 7— by 10-foot
wind tunnels. The forces on a body of revolution with a Jet exhausting
from a nozzle at the tall into both still and moving air were measured.
The nozzle shape was changed by the use of four nozzle extensions which
provided one outlet in a plane mormal to the nozzle center line and thres
outlets in planes rotated 309, 60°, and 75° from the plane of the normal
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outlet., TIn addition to the wind—tunnel force tests, visual studies were
made of the Jjet exhausting into still air.

NOTATTON

The following symbols and subscripts are used in this report:

mean aerodynamic chord of assumed wing, 1 foot

9l

Cn pitching-moment coefficient about an axis at 39.35
pitching moment)

percent of the body length

5¢q,,
H total pressure, pounds per square foot
M Mach number
P static pressure, pounds per square foot

q dynamic pressure <% DV2>, pounds per square foot
S assumed wing area, 10 square feet

v velocity, feet per second

a angle of attack, degrees

p mass density of air, slugs per cubic foot

Subscripts

J Jet—outlet conditions
max maximum value for given station

0 free—stream condltions

MODEL AND EQUIPMENT

The model used in the tests was a streamline body of revolution with
an outlet at the tail. The basic body was 76.25 inches long and had a
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maximum diameter of 12 inches at 39.35 percent of the length (figs. 1

and 2). Ahead of the maximum diameter, the body was ellipsoidal with a
semimajor axis of 30 inches. A circular-arc fairing with a radius of
about 42 inches formed the transition between the forebody and the after—
body which was conical. The diameter of the jJet—outlet in the tail of

the body was 2.43 inches.

The nozzle was machined to receive interchangeable extensions as
shown in section A-A, figure 2, Tests were made with four nozzle exten—
sions, one providing an outlet normal to the nozzle center line and the
other three providing outlets bevelled 30°, 60°, and 75° measured from
the plane of the normal outlet. (See fig. 3.)

The body was mounted in the wind tumel on a single, tubular strut
which, in turn, was supported in two ball bearings on the floating frame
of the wind—tunnel balance. (See fig. 2.) The center line of the strut,
and therefore the axis of rotation of the body, passed through the maxi-—
mum diameter of the body.

The only restraint to the rotation of the body and strut, besides
friction in the bearings which was considered to be negilgible, was that
caused by a calibrated strain gage mounted as shown in section BB of
figure 2., The straln gage measured only the torque, or moment, about the
center of rotation of the body. The lower end of the tubular strut
fitted into a mercury seal and the upper portion, between the tunnel
floor and the body, was shilelded by a streamlined fairing visible in
figure 1, A compressor outslde the test chamber supplied air for the Jet.

A total-pressure tube and a thermocouple were installed in a plenum
chamber within the model, and each of the nozzles had a static-pressure
orifice on its immer surface 0.25 inch ahead of the most forward point
of the outlet. (See fig. 2.) These total— and static—pressure tubes
were commected to a Machmeter, of the type described in reference 2, from
which the Mach number at the outlet was read directly. The Mach number
indicated by the Machmeter was within 0.01 of the Mach number determined
from the pressure ratio across the nozzle.

TESTS AND TEST PROCEDURE

The body with each of the outlets was tested at angles of attack
from -8° to +8° with jet—velocity ratios (Vj/VO) of 0, 2.0, 3.0, and
4,0. The outlet diameter, 2.43 inches, was about one—seventh full scale
compared with that for a representative Jet engine having a static thrust
of 4000 pounds. The Jet—velocity ratios from 2.0 to 4.0 represent values
encowntered in full-scale aircraft operation at speeds from 700 to 300
miles per hour for altitudes up to 40,000 feet. The Jet—velocity ratio
for each jet Mach number and plenum—chamber temperature was varied by

varying the tunnel speed.
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In general, the tests were made with the highest practical tunnel
speed and corresponding Jjet Mach nuuber. The operating limitations were
those imposed by the strength of the model and strain gage and by the
capacity of the air compressor. The maximum tunnel speed with the body
at zero angle of attack corresponded to a Mach number of about 0.30 and
a Reynolds number of 2,100,000 per foot. The maximm Jet velocity
corresponded to a Mach number of 0.8 with a pressure ratio (Pj/Hﬁ) of
about 0.656, The dynamic pressures in the wind tunnel and thé Jet Mach
numbers for all the tests with extermal air flow are presented in

table T,

Visual studies of the flow from each of the outlets were made with
the Jet exhausting at Mach numbers of 0.6 and 0.8 into still air.
Visualization of the flow along the plane of symmetry of the Jet was
accomplished by using Jet-splitter plates mounted as shown in figure L,
The plates fitted closely outside the nozzles ahead of the outlets and
extended inside the nozzles through the constant-area section to the
low—speed region ahead of the nozzle contraction. A mixture of lampblack
and kerosene, sprayed into the Jets immediately after they emerged from
the outlets, was deposited on the plates in the mixing regions of the
Jets. The patterns formed by the lampblack were photographed.

The sign convention used in expressing the pitching-moment coeffi-
cients for the body is shown in figure 5. To facilitate the tests,
negative angles of attack were simulated by rotating the nozzle exten—
sions 180°, This procedure was checked by testing the body with the
75°-bevelled outlet at an actual negative angle of attack. The resulting
pitching moment was found to agree, within the experimental accuracy,
with that for the body at the corresponding simulated negative angle of
attack. For the calculation of pitching-moment coefficients from the
strain-gage data, the model was assumed to have a wing with an area of
10 square feet and a mean aesrodynamic chord of 1 foot in order that the
coefficients would have the order of magnitude associated with a scale— -
model airplane having the test body as a fuselage. Thus,

pitching moment
- 10 g4

The model oscillated throughout the test because of minor flow
fluctuations in the wind tunnel. The magnitude of the oscillations
affected the strain-gage readings to the extent that the pitching—
moment coefficients for the tummel-on tests could be calculated with
an accuracy of only #0.001. Wo tumel-wall corrections were applied.
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RESULTS AND DISCUSSION

) Jet Operating, Wind Tunnel Off

Figures 6 and 7 show the variation of the pitching moment and of the
Jet thrust with Jet Mach number as determined from static tests. The
pitching moment for the body with the normal, or 0°-bevelled, outlet was
attributed to misalinement of the nozzle relative to the moment center.
Therefore, these values of pltching moment were subtracted from the
total gtatic pitching moments for the other outlets to obtain the values
shown by the dashed curves of static pitching moment attributed solely
to asymmetrical Jet action. The static pltching moment for the body
with the 60°-Dbevelled outlet was estimated from cross plots of the data
for the other three outlets. No measurements of nozzle coefficients were

made in the present investigation.

As shown in figure 6, the pitching-moment increment attributed to
asymmetrical Jet action increased with increasing jet Mach number and
with increasing outlet bevel angle, the maximum value being —1.26 pound—
feet for the 750- bevelled outlet with a Jet Mach number of 0.8, The
magnitude of the force necessary at the tail of the body to produce this

_ moment was about that which would result from the action, on the asym—

. metrical outlet, of the static pressure differential which existed
between the Jet outlet and the still, external air, as determined uti—
lizing the analysis in reference 3 for the mixing of a parallel stream

“ with the adjacent air. The static pitching moment corresponded to a
deflection of the Jet—thrust direction at the outlet plane of only 0.30.
The value of the static pitching moment for the 750-bevelled outlet with
a Jet Mach number of 0.8, if converted to a pitching-moment coefficient
for a Jet-velocity ratio of 4,0 (q, = 58.8 pounds per square foot), would
would be only -0.0021, which is only slightly larger than the experimental

wcertainty of the tests,

Jet Off, Wind Twnel Operating

The variations of the pitching-moment coefficients of the body with
outlet bevel angle for the Jet—off, tunnel-operating tests (VJ/VO = 0)
for angles of attack from —8° to +8° are shown in figure 8. The effect
of tumnel ailrspeed on the pitching-moment coefficients was found to be
small, so the curves represent averages applicable for all airspeeds in
the test range. The curves indicate that the cross flow over the agym—
bl metrical tail of the body as the outlet bevel angle increased to 60°
cauged a positive increment In the pitching-moment coefficient. However,
for the extreme casgse of the 75O—vbevelled outlet, the pitching-moment
‘ coefficients had decreased to values comparable with those for the
0°— and 30°- bevelled outlets,
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Jet Operating, Wind Tunnel Operating

The curves of pltching-moment coefficient for the Jet—on, tunnel-on
tests are presented in figure 9 for Jet—velocity ratios (Vj/vo) of
2.0, 3.0, and 4,0. The increase of pitching-moment coefficient with
increasing outlet bevel angle was probably due to a combination of the
effects discussed in the two previous sections. However, the effect of
asymmetrical jet action was shown to be very amall, so the increments
shown in figure 9 can be attributed almost entirely to the cross flow over
the bevelled outlets. The reascn the increments of pitching-moment coef—
ficient with the jet operating (fig. 9) are less than those with the jet
off (fig. 8), especially at positive angles of attack, is probably that
the presence of the jet alleviated much of the effect of the cross flow

over the outlets.

The curves in figure 10 show the effects of jet—velocity ratio and
outlet bevel angle on the stability of the body more clearly and also
emphasize that these effects were small. The variation of the pitching-—
moment coefficient with the angle of attack of the body with the
0% and T5°%bevelled outlets is shown for each of the three Jet—velocity
ratios. In each case the body was unstable, but the effect of increasing
the bevel angle was slightly stabilizing, especially at negative angles
of attack. The effect of increasing the jet—velocity ratio was also
slightly stabilizing, especially for the larger outlet bevel angles, and
was probably the result of small changes in the external surface pres—
sures near the jet outlet as the jet—velocity ratio was wvaried.

Flow Studies; Jet Operating, Wind Tunnel Off

Flow-study photographs of the Jjet issuing into atill air from each
of the outlets for jet Mach numbers of 0.6 and 0.8 are reproduced in
figures 11 through 14, Because of the effects of boundary-layer growth
along the plates and the interference of the plates with the Jet, this
flow visualization technique may not present an accurate measure of the
characteristics of a free jet. However, the magnitude of these effects
is probably small in the high—velocity central region of the Jet where
the flow patterns are sufficiently clear to permit comparison with Jet
characteristics determined from pressure surveys in references 1 and 4,

From measurements made on the photograph of the flow from the normal,
or 0%-bevelled outlet, for a jet Mach number of 0.8 (fig. 15), the
approximate boundaries of the Jet (boundary A) and of the potential core
(boundary B, enclosing the clear triangular area extending from the outlet,
in which the velocity was equal to the velocity at the outlet) have been
plotted nondimensionally in figure 16. TIncluded in the figure are experi-—
mental points determined from velocity profiles measured in other investi—
gations (references 1 and L) designating Jet and potential—core boundaries.




NACA TN 2379 7

The potential-core boundary from the flow plctures (boundary B) agrees
well with the experimental points, but the Jet boundary (A) lies outside
the boundaries determined from the velocity profiles, probably because
of the boundary—layer and interference effects of the plates, mentioned
previously, and because of the excess of the kerosene—lampblack mixture

at the jet boundaries.

The asymmetry of flow in the mixing regions and around the potentlal
core of the Jet can be seen in the pictures for the bevelled outlets
(figs. 11-14)., One characteristic shown by these pictures is that the
glope of the boundaries, or elements, of the potential core remained
esgentially constant for all the outlets, the effect of the bevel having
been merely to translate elements of the core rearward. The apex of the
core, therefore, was displaced from the center line of the nozzle as
illustrated by the following sketch:

Parallel
— e e o e oo — potential—core
-
7/ —— elements
Nozzl —
ozzle ‘:::>
CL o

Bevelled outlet

Normal outlet

Insofar as the flow pictures afford a basis for a qualitative com—
parison of the characteristics of the flow from the various outlets
(see figs. 11-14), two effects are worthy of mention. For the bevelled
outlets, the potential~core boundary (B) varied in the manner Just des—
cribed, and the Jet boundary (A) indicated an asymmetry in the spreading
of the Jet which became more pronounced as the outlet bevel angle was

increased,
CONCLUDING REMARKS

Force tests made with a body of revolution with an unheated, sub—
sonic Jet of air exhausting from the tail showed that only small changes
in pitching moment were caused by cutting off the outlet at angles of
30°, 60°, and 75°, measured from a plane mormal to the outlet axis,

The changes were the result of two opposing factors, a very small
pitching-moment increment attributed to the asymmetrical action of the
Jet and a larger increment attributed to the asymmetry of the extermal
forces on the bevelled outlets,
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Visual studies of the flow in the Jjets exhausting into still air

were compared with Jjet characteristics determined from velocity profiles
meagured in other investigations.

Ames Aeronautical Laboratory,

National Advisory Committee for Aeronautics,
Moffett Field, Calif., Mar., 9, 1951.
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TABLE I. — JET AND WIND-TUNNEL
OPERATTNG CONDITIONS

90
Vj/vo a M; average
(deg) (1b per sq ft)
18 0.h4 57.6
6 ) 90.0
2.0 # .6 126.6
0 .6 126.6
0 .6 126.6
+8 .7 77.6
+6 T £9.7
3.0 ) .8 101.3
+2 .8 101.3
0 .8 101.3
g .8 58.8
+6 .8 58.8
4.0 # .8 58.8
+2 .8 58.8
0 .8 58.8
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Figure 2.— Details of body-mounting methoa, nozzle installation, and strain-
gage installation.
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(a) 0°%bevelled outlet,

(b) 30%bevelled outlet.

Figure 3.— Nozzles.
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(c) 60%bevelled outlet.

. (@) 75% bevelled outlet.

Figure 3.-— Concluded.
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Figure 6— Static pifching moment caused by Jet issuing from bevelled outlet.
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Jet thrust, /b
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Figure 7—Static thrust of jet issuing from bevelled outlets.
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(b) Mj, 0.8

A-156L42

Figure 1l.— Flow pictures of Jet exhausting into still air for two jet
Mach numbers. 0°-bevelled outlet.
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(v) Mj, 0.8

A-15643

Figure 12.— Flow pictures of Jet exhausting into still air for two Jet
Mach numbers. 30°-bevelled outlet.
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(a) Mj, 0.6

(b) M3, 0.8 RNAcA

A-15641

Figure 13.— Flow pictures of Jet exhausting into still air for two Jet
Mach numbers. 60°-bevelled outlet.
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(p) My, 0.8

A-15645

Figure 1k.— Flow pictures of Jet exhausting into still alr for two Jet
Mach numbers. 75°— bevelled outlet.
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